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A non-Markovian version of the quantal Brownian motion model is given. The 
integrodifferential equations of motion are solved, establishing the analytic form 
of the resolvent poles and analyzing their properties. An explicit investigation of 
the poles at zero temperature is performed. In this frame a rule can be found 
that relates the relevant poles of the non-Markovian resolvent to the eigenvalues 
of the associated Markovian generator of the motion. 

KEY WORDS: Non-Markovian master equation; resolvent poles; zero tem- 
perature; non-Markovian/Markovian frequency relation. 

1. I N T R O D U C T I O N  

The determinat ion of  the validity of a Markov ian  description of  a 
relaxation kinetics in either a short-t ime domain  or in physical situations 
where a neat separation between time scales does not  show up is an 
interesting problem in branches of condensed matter  physics. A recent 
approach  to the description of damped  collective mot ion  in finite quantal  
systems such as nuclei, named the quantal  Brownian mot ion  ( Q B M )  
model,  has been recently proposed (1) and a collection of  applications have 
been made (z H) that  exploit the Markov ian  limit of the model. Since this is 
likely not  a good  approximat ion  for finite systems, we consider it con- 
venient to examine the non -Markov ian  version of  the Q B M  model  and to 
find a criterion to compare  some aspects of the related time evolution and 
relaxation of the collective mode  with those predicted in the Markov ian  
limit. 

To this end, in Section 2 we briefly review the characteristics of  the 
Q B M  model  and relate it to alternative descriptions of  the decay of  har- 
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monic oscillations coupled to a heat bath. We then present the equations of 
motion in the non-Markovian QBM model, establish the analytic form of 
the poles of the resolvent of the integral generator of the motion, and 
analyze the properties of the transition rates upon which these poles 
depend. An explicit investigation of the characteristics of the poles at zero 
temperature is presented in Section 3 from a general viewpoint, and a 
model application is discussed in Section 4. It is shown in Section 5 that 
from the previous sections one can find a rule that relates the relevant poles 
of the non-Markovian resolvent to the eigenvalues of the associated 
Markovian generator of the motion. The major results of this work are 
summarized in Section 6. 

2. T H E  T R A N S I T I O N  RATES IN T H E  N O N - M A R K O V I A N  
Q B M  M O D E L  

We are interested in the description of the damped motion of a quan- 
tal harmonic oscillator immersed in a stationary fermionic reservoir with 
which it interacts through a standard particle-phonon potential. (1 5) The 
system we have in mind is a nucleus where a collective vibration that has 
been excited, e.g., by photoabsorption or nucleus-nucleus inelastic 
scattering, undergoes statistical decay, releasing excitation energy to the 
intrinsic or nucleonic degrees of freedom. (12) We have recently proposed the 
QBM model in order to investigate the dynamic and thermodynamic 
aspects of vibration damping combined with broadening of single-particle 
(s.p.) lines in nuclear matter, (1'2'5"7'1~ in spherical nuclei, (3'4) in axially sym- 
metric nuclear matter, (6'8) and in axially deformed nuclei. (9"~1) Apart from 
specific details concerning the symmetry of the system, the number and 
characteristics of the vibration, and the object of a particular investigation, 
where one may focus either on the collective or on the s.p. dynamics or on 
both, the essentials of the QBM approach are as follows. One proposes 
that a Hamiltonian 

H =  Y" h ~ i i . +  f i + H v  q_ y ,  (i) + + <i)* + (2~.F i b. b~ + )~. Fib~ b.) 
i ~t# 

i 

(2.1) 

generates the evolution of the complete density operator of the system 
according to the Schr6dinger-von Neumann equation of motion. I n  

expression (2.1), we assume that several harmonic modes with frequencies 
g2 i and phonon numbers F+Fi may be present, immersed in a fermion heat 
reservoir with Hamiltonian Hv (whose details are not relevant to the 
current work), where b + and b, are the fermion creation and annihilation 
operators, respectively. The coupling mechanism proceeds according to 
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fermion excitation (resp. deexcitation) combined with destruction (resp. 
creation) of a phonon of some class i, with corresponding vertex intensity 
)~ (0 The labels ~ and p, respectively, denote s.p. states that can decay into a ~ c t / t  " 

phonon plus a lower energy s.p. and that can collapse, together with an 
already existing phonon, into a higher energy fermion. 

The reduction procedure applied to the full Schr6dinger-von 
Neumann equation of motion, combined with the neglect of initial 
correlations and with a weak coupling-like approximation to be explained 
below, gives rise to a set of equations of irreversible evolution. (~'2'6-~~ The 
desity matrix of each oscillator is driven by a Pauli-like master equation, 
while the fermionic statistical operator evolves according to a generalized 
kinetic equation that includes the particle-phonon transition rates, in 
addition to the two-fermion interaction that may appear in the 
Hamiltonian H r .  

Far from embarking on a detailed discussion of the QBM model and 
its various applications, in the present work we wish to investigate the 
spectral properties of the non-Markovian QBM master equation. This is an 
important issue in view of the future computations in connection with the 
nuclear problem, where so far all calculations have been performed in the 
Markovian limit. On the other hand, the kind of analysis we propose is 
interesting and useful on purely statistical grounds, since we end up with 
rules relating the poles of the non-Markovian resolvent to the collision 
frequencies of the corresponding Markovian limit. For simplicity, we focus 
on a system consisting of one harmonic oscillation in a Fermi reservoir 
where the two-body interactions are sufficiently strong with respect to the 
particle-phonon coupling so that the fermions can be regarded as a 
thermalized ideal gas within the relaxation scale of the vibration. The non- 
Markovian master equation for the occupation probability of the n-phonon 
state then reads 

2 
~o = ~  

x 

2 

+ 

2 

x 

g2 I~ dr e -7~ ~ 12~.t 2 
~ u  

cos [-(oG, -- (2)r] [ p , ( t  - -  r )  p,(1 - -  p~)  - -  p o ( t  - -  r )  p~(1 -- p , ) ]  

f2 g2 dI'e-~'~E [~ul2cos[(o.)c~-~)'c][(Pn+l- p~),_~ p ~ ( 1 - p ~ )  

( p , _ l - p , ) , _ ~ p ~ ( 1 - - p , ) ] ;  l < ~ n < ~ N - - 1  (2.2) 

fo 
[ - p N ( t -  ~) p~(1 - p~) + pN-~( t -  ~) p~(1 - p~)] 
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The symbols in Eq. (2.2) are the same as in previous work (1 11) and 
indicate the following. The oscillator frequency is 12, while co~, is the 
difference (e~-e , ) /h ;  the quantity g in front of the integral is an overall 
degeneracy factor related to internal fermion coordinates. N is the 
maximum allowed number of phonons in the computable oscillator spec- 
trum. The equilibrium density of the fermions is the Fermi distribution at a 
given temperature T, PA = [1 +exp(~A--~v)/T] -1 for A = c~ or /~. Notice 
that the integral in Eqs. (2.2) is a convolution; thus, the diagonal matrix 
elements of the oscillator density operator appear as evaluated at time 
t - z .  The parameter y deserves a special word, since its appearance is 
related to the current weak coupling approximation. Indeed, one knows 
from the classical literature regarding the general master equation ~ 18) 
that the convolution term includes a propagator Ucc(z)= 
exp [ ( -  i/h) Lccz ], where Lcc is the LiouviUian in correlation space, namely 
the one generating the evolution of the system between two interaction ver- 
tices. Our version of the master equation in the QBM model contains the 
approximation 

Ur m e x p [ ( -  i/h)(L v + L o s c i l l a t o r ) ' C  - -  7~'] (2.3) 

In fact, the above assumption does not fit the usual weak coupling limit, (19) 
since in this model we are assuming that some part of the total interaction 
involves unobserved or disregarded channels whose overall manifestation is 
an inelastic particle-phonon collision, this inelasticity being proportional 
to the correlation width or energy spread 7- 

It is worthwhile noticing at this point that the Markovian limit of the 
master equation (2.2) presents non-Gibbsian equilibrium behavior. (2~ 
Indeed, we may write the equilibrium solution of the Markovian master 
equation (1) for any temperature as 

• (2.4) 
o(.~ = z k w + / 

where Z is the normalizing factor or partition function. Now, the ratio 
W_SW+ coincides with the canonical Boltzmann weight exp ( -h~ /T )  if 
and only if 7 = 0, i.e., if the dissipative mechanism proceeds through strictly 
elastic collisions. We could, however, regard expression (2.4) as a definition 
of an "effective" temperature 

hf2 
Terr(T, 7)= (2.5) In(W/w+) 

In other words, the stationary state of the Brownian oscillator that 
undergoes inelastic collisions with fermions in a heat bath depends on both 



Non-Markovian Quantal Brownian Motion Model 387 

parameters of energy spread, a macroscopic and a microscopic one, respec- 
tively, the temperature T and the correlation width 7- This is related to the 
fact that the inelasticity spread 7 represents unobserved interaction chan- 
nels, which, however, participate in the overall equilibration process; the 
effective temperature (2.5) is then the thermodynamic force that describes 
equilibrium among all degrees of freedom, including the disregarded ones. 
This non-Gibbsian behavior has been observed by other authors ~21'22) who 
consider a harmonic oscillator strongly coupled to a bath of harmonic 
oscillators. 

In order to solve the integrodifferential equations (2.2), we algebrize 
them, introducing the Laplace transforms pn(s) for each occupation 
number, obtaining 

Spo(S) - po(t = o) = w+ (s) p,(s) - w (s) po(S) 

s p . ( s ) - p . ( t  = o)= W +(s)[p.+ , ( s ) -  p~ 

+ w (s)[p. l ( s ) - p . ( s ) ] ,  1<~n<~N-1 

SpN(S ) - p N ( t = O ) =  --W+(S) pN(S)+ m (S) pu 1(S) 

(2.6) 

with the microscopic transition rates 

2g 2 - s + 7 
W+_(s)=--~-Lj2~.12(s+~)2+(~o~ _ ( 2 ) 2 p { ~ ( 1 - p { ~ )  (2.7) 

In this frequency representation the inhomogeneous linear system is 
simply 

p(~) = R(s)  p(t = o) (2.8) 

for the vector p with components Pn in either the time (t) or the frequency 
(s) representation, with the resolvent 

1 
R(s) - - -  (2.9) 

s - M(s)  

where M(s) is the tridiagonal matrix appearing on the rhs of Eq. (2.6). If 
s=0 ,  the matrix M(0) is the generator of the motion in the standard 
(Markovian) QBM model (a) with inelastic collisions. (2) As we anti- 
transform equation (2.8), we obtain the desired time evolution as 

p(t) = ~ Res[R(s), s~] eSr'p(0) 
S r : M(sr) 

(2.10) 
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where the amplitudes of each decaying exponential are the residues at the 
poles s~ of the resolvent R(s). The evaluation of the poles reduces to the 
spectral problem of a generator M(s), whose solution has been presented in 
previous QBM work and reads 

r ~  
s r = - W + ( s r )  - W (Sr)  ~- 2[ W+(sr) W (sr)] 1/2 cos - -  

N + I  (2.11) 

S N + I ~ 0  

with r = 1,..., N. 
From Eq. (2.11) it turns out that a couple of simpler problems may be 

formulated; indeed, if we assume that the ratio T/hf2 is low enough that we 
can neglect the probability of populating oscillator states with more than 
one quantum, we are left with just two poles, namely 

s l =  - [ W + ( s l ) +  W_(sl)] ,  s2=0  (2.12) 

On the other hand, at absolute zero the "upward-going" transition rate 
W (s) generally vanishes, since fermion labels ~,/t  correspond to particles 
and holes (p~ = 1 - p~ = 0). Then, in such a case, the poles are 

sl = -W+(s~),  s2=0  (2.13) 

In later sections we will concentrate in the latter problem as stated in 
Eq. (2.13). However, before attempting the detailed computation of the s~ 
poles, we would like to establish the most general appearance of the 
transition rates W_+ (s) at arbitrary temperatures. Such a study is especially 
interesting if we consider an infinite, translationally invariant fermion 
environment with s.p. states characterized by momenta ks, k ,  and where 
the oscillator represents an acoustic-like collective mode with momentum 
q.~) We further assume that the collision vertex is momentum-conserving, 
so that k~ = ku + q. Under such conditions, and adopting polar coordinates 
(r, ~0, z) in k~, space, we find for the transition rates, after some calculations 
(see the Appendix), 

21212n- I q  s + ,  W + ( s ) = g  --;-v-L 3 dz R+(z) (2.14) 
- - / 2  ( s + ~ ) 2 + E ~ ( z ) / h ]  2 - 

In order to derive Eq. (2.14) we supposed that the coupling matrix 
elements are essentially identical to a single parameter 2 if as the z com- 
ponent of the momentum is higher than - q/2 and zero otherwise. This is a 
rule that forbids, at zero temperature, interaction events that would 
annihilate a phonon transferring a particle from one to another level below 
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the Fermi sea (cf. Fig. 1 in Section 3). The volume of the box, L 3, appears 
in the continuum limit of the summation over momentum states and the 
radial integrals R e (z) can be cast as (23) 

R + ( z )  = 
1 

z4 
1 - exp{ - [E(z) + h f 2 ] / T }  

1 + exp[ - (z  2 - F2) /k  2] 

x In [ 1 ~d e~P-~p { ~ -[~-~ ~- ~ k ~  } ] (2.15a) 

R_ (z) = (exp { [z  2 - (z  + q)2]/k2r} ) R + (z) (2.15b) 

In Eqs. (2.15), F denotes the Fermi momentum, while k r is the thermal 
momentum (2mT)l /a /h .  The energy variable in the denominator of the 
Breit-Wigner filter can be written as 

~(z) = ~ + hq 

=hZq  ( Z -  Zo) (2.16) 
m 

where we have introduced the acoustic dispersion law [2=Cs  lql and 
momentum conservation into the difference e ~ - e , - h Q .  We can then 
realize from Eq. (2.15b) that the radial integral R ( z )  vanishes as T 
vanishes, as already set when writing expressions (2.13). Notice, however, 
that as T approaches zero, one has to be careful with the limits in 
expression (2.15a), since different regions of momentum space contribute 
differently according to the relative location of z and z + q with respect to 
the Fermi momentum. This situation is dealt with in Section 3. 

For finite temperatures T, the transition rates in (2.14) must be 
computed numerically. It is interesting and useful for future discussion 
to perform a dimensional analysis of expression (2.14) and exhibit some 
relevant size parameters. Such an analysis is not unique and in what 
follows we just display one of the various possibilities. We first notice that 
the Breit-Wigner kernel in (2.14) can be expressed as a distribution in 
momentum space, 

s + ?  
F(z,  s)  = Vq (s + 7) 2 + [e ( z ) / h ]  2 = 112 + (z  - Zo) 2 (2.17) 

with a momentum variable 

q = ( s +  ,/)/Vq (2.18) 
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w h e r e  1Qq =hq/m is a velocity related to the phonon momentum. The 
transition rates thus read 

- -  d z F ( z , s )  R+(z )  W-I-(S)~ W~(~])=~ 1)q q/2 (2.19) 

with 09~= g2/h setting a characteristic frequency associated with the 
interaction strength and the number of internal degrees of freedom per 
particle. We now observe that the integral in (2.19) possesses the dimension 
of a square momentum (k2(s))_+. A dimensional analysis then allows us to 
write the transition rate as 

where 

W+ (s) = co) r~rr(k2(s) ) +_ (2.20) 

raf = (.J_ g2mL 3"~ 1/2 
/ (2.21) 

plays the role of an effective interaction range. In fact, apart from a dimen- 
sionless factor relating energy parameters of the system, r,fr is the geometric 
average between the size of the box and the phonon wavelength q-1. We 
can then anticipate that the location of the poles [cf. Eq. (2.11)] is strongly 
dependent on the competition between the effective length and the rms 
momentum [ ( k 2 ( s ) ) ]  t/2. We return to this point in Sections 3 and 4. 

3. THE RESOLVENT POLES AT ZERO T E M P E R A T U R E  

The problem outlined in Section 2 essentially reduces to solving 
Eq. (2.11) under particular conditions in order to locate the characteristic 
decay frequencies of the vibrator. In this section we will concentrate on the 
T =  0 case, where the secular equation is given by (2.t3). Before embarking 
on the computation of the transition rate W+(sl) ,  we analyze the general 
properties of the expected oscillator density vector as a function Of time. In 
this case it is a straightforward algebraic exercise to find the resolvent 
matrix, since it is just the inverse of 

s - M(s)  = 

s - W  0 

0 s + W  - W  

0 0 s + W  

0 . . .  

--" 0 

0 .-. 0 

- W  

. . .  0 
'~  

- W  

s + W .  

(3.1) 
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where W =  W+(s). The resolvent can be seen to be 

1 W W 2 

s s ( s + W )  s ( s + W )  2 

1 W 
0 

s+  W (s + W) z 

1 
0 0 

s + W  R(s)  = 

W 3  . , . w N  

s(s + w) 3 s(s + W)  N 

W 2 . , .  W N 1 

(S "~ W) 3 ( s  --~ W )  N 

W W N - 2 

(S .qu W) 2 (S .Aft W )  N - 1  

. ,  W 

(s + w)  2 

1 
... 0 s + W  

0 0 0 

(3.2) 

In order to fix ideas without losing generality, we select a particular 
initial condition, pn(0) = 6n.x. Different choices represent extension exercises 
that can be easily undertaken. Thus, the Laplace transform of the density 
vector is 

po(S) = W/(s  + W)s 

pl(s) = 1/(s+ W) (3.3) 

pn(s) = 0  (n>~2) 

It will be shown below that for the system under consideration the 
poles are single (except for a null measure set in parameter space). 
Consequently, the amplitudes governing the evolution of the element po(t) 
a r e  

A ( 0 ) = l i m  W+(s)  _ I (3 .4)  
, ~ o s +  W+(s) 

and 

A(s1)_ W+(s) lim s - s 1  
s~ s ~ s + W + ( s )  

= - lim s --  S 1 
�9 ~, l  s +  W + ( s )  (3.5) 
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The inverse transform of Eqs. (3.3) is then 

po(t)= l + ~ A ( s l ) e  s'' 
Sl 

pl(t) = - ~  A(sl) e s'' (3.6) 
Sl 

po(t)  = o (n >>. 2) 

where the summation indicates that the pole equation Sl = - W + ( s l )  may 
possess more than one solution; if that happens, the initial condition 
demands that 

A(Sl) = - 1  (3.7) 
sl 

Let us now take a look at the transition rate W+(s) in Eq. (2.7). We 
notice that for zero temperature, the restriction for states c~ and kt to lie 
above and below the Fermi level, together with the linear momentum 
conservation law, determines the shape of the integration domain. The 
integration to be carried out is 

~2 s + 
W+(s)=  1212L3fdz f rdr ( s+7)2+[e(z ) /h]2  (3.8) 

while the integration domain is the half-croissant-like region depicted in 
Fig. 1. The result of this calculation is 

W+(s) = W+ (r/) = o9; re2ff(k2(r/)) (3.9) 

with 

) = r/{ - q[1 + ln(~/2 + ks2)] + z~ ln[t/2 + ( F -  (k20/) Z~) 2 ] 

( r l 2 + F 2 - - z ~ ) t g - l ( ~ - ~ )  +2k 'q  ( ~ ) }  
tg -1 (3.10) 

t/ t/ 

where 

k s = mcs/h (3.1 la) 

z~, = ks - q/2 (3.1 lb) 

z~, = ks + q/2 (3.1 lc) 
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z] 
F 

F-q 

0 

-% 

> 
r 

Fig. 1. The domain of integration of the transition probability in the (k~, kr) plane is 
denoted by the shaded area. 

Actual evaluation of the poles should correspond to specific problems, 
since there are too many parameters involved to extract any relevant 
conclusion from a general analysis. Indeed, so far we have not specified the 
sizes of the interaction strength 2, the sound velocity cs, the phonon energy 
hf2 (or, equivalently, the phonon momentum q), the size L of the box, and 
the Fermi momentum, or density, of the particles. We present a particular 
illustration in the next section. 

4. THE BEHAVIOR OF THE POLES IN A M O D E L  A P P L I C A T I O N  

In this section we specialize to a set of parameters adequate to a 
specific system and analyze the characteristic of the poles and the time 
evolution of the oscillator density in the current non-Markovian approach. 
As stated at the beginning of Section 2, the problem we have in mind 
concerns the decay of a quantized collective vibration of the "fluid" in the 
interior of a heavy nucleus due to phonon-nucleon coupling and is of 
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interest as a paradigm of non-Markovian behavior, since the macroscopic 
and microscopic scales in the nuclear domain are rather similar and a 
kinetic description without memory should, in principle, not be allowed. 
We then fix the parameters as follows: 

Fermi momentum F = 1,38 f m -  

phonon energy h~  = 13 MeV 

inelasticity spread h? = 100 MeV 

sound speed cs = 75 x 102t fro/see 

spin-isospin degeneracy g = 4 

We assume that the poles s are complex with negative real part, i.e., 

s~ = --v  + ib (4.1) 

and look for the real, dimensionless solutions, 

v/? = ( W + / 7 ) ( v / 7 )  (4.2) 

in a graphical fashion. The situation is depicted in Fig. 2, where we have 
plotted the rate W ( v / y ) / ?  as a function of v/7 for different values of the 
parameter coxr,~,2 which contains both the interaction strength and the box 
size. The solutions of Eq. (4.2) are then the intersections with the bisectrix. 

1.0 

0.5- 

0 0.5 1.0 

Fig. 2. Graphical solution of the equation defining the singularities of the resolvent. The 
~ for the curves 1-5 are, respectively (in 1021 sec -1 fm2), 8.290, 82.90, 414.5, values of o~refl- 

715.3, and 829.0. 
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It is clear from inspection of this plot that three different regimes show 
up, namely (1)one low decay frequency located near the origin, while 
W+(1)/y remains below unity; (2)one low and one high frequency, the 

2 latter departing from the value v< =7  toward smaller values as co;.ro~ 
increases; this regime lasts until the two poles merge into a single one at 
v> =v< =7/2 and this condition occurs when W+(1/2)/7 equals unity; 
(3) for higher parameter values, no real pole occurs. 

Let us now investigate the characteristic of each regime and of the 
transitions from one into the other. On the one hand, we locate a first 
transition at W+(1)/7=1;  regime 1 (resp. regime2) corresponds to 
W+ (1)/Y < 1 [resp. W+ (1)/7 > 1 ]. The ratio W+ (1)/7 can be expressed as 
follows. If we compute the square momentum in (3.t0) for q = 0, we get 

(k2(0)) = 2rcksq (4.3) 

Using (3.11a) and the acoustic dispersion law, we realize that this quantity 
is just the inverse of the zero-point dispersion of the oscillator, 

(k2(0))  = rc2ml2/h = zc/a 2 (4.4) 

and consequently, for v/7 = 1, 

W+ (1)/7 = ~zc~ r~fr/7 ~r2 (4.5) 

We can now attempt an interpretation of the single-real-pole regime 1. 
Equation (4.5) tells us that if rccozr~rf~a~7, we typically get curve 1 in 
Fig. 2. In this case, we are either in a very weak coupling regime (c% ~ 7), 
or within a rather small box (L ~ a) or have a combination of conditions. 
The combined effect can be visualized as depicted in Fig. 3a; the zero-point 
spread of the vibration is large enough for the oscillator to "see" a highly 
localized box. In other words, the probability clouds of the oscillator 
ground state and first few excited states almost fill the box uniformly. We 
notice that this geometrical viewpoint implies a separation between length 
scales that is typical of a Markovian description: the interaction domain 
(the box) is much smaller than a length parameter associated with the 
collective motion. We feel it is safe to assert that the Markovian 
approximation to the non-Markovian evolution ought to be adequate 
within this range of parameters. 

As ~o;r~f r increases, the above distinction between length scales 
becomes fuzzier (the "size" of the zero-point vibration approaches that of 
the interaction domain). We can observe in Fig. 2 the evolution of the low- 
frequency poles along the line f ( v / y )=v /y .  The transition between the 
single-pole to the double-pole regime takes place when o)~rer r -2  _ 7cr2/~z [cf. 
Eq. (4.5)] and according to the above line of reasoning, we can draw a 

822/50/1-2-26 
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I 

(a) (b) 

Fig. 3. Schematic comparison between the size of the effective fermion configuration space 
and the oscillator spread for (a) very weak interaction (curve 1 in Fig. 2, see text for descrip- 
tion) and (b) moderately weak interaction (curve 3 in Fig. 2). 

picture like that of Fig. 3b to represent this second regime. In fact, we may 
now imagine that the interaction domain contains more structure of the 
oscillator wave functions. According to the neighborhood where a particle- 
oscillator collision takes place, such an event could involve the wave packet 
components that contribute to the peak or the more incoherent ones giving 
rise to the tails. The former events resemble, or keep the track, of the 
Markovian-like process in the first regime and may thus occur at the low- 
frequency rate, while the high-frequency pole should be rather related to 
the coupling among the particles and the less coherent components of the 
oscillator wave functions. It is then clear that this distinction becomes 
meaningless as the interaction parameter increases, since these wave 
functions become more and more localized within the coupling range; con- 
sequently, the two poles approach each other along the bisecting line. It is 
also evident that this regime may persist until both poles collapse together 

2 at v/~ = 1/2. From this stage on, further increase of the parameter ogjefr 
leads to regime 3, where no real solution to our spectral problem can be 
found. 

We can easily understand this effect as follows: a glance at Eq. (2.7) 
and a bit of algebra quickly tell us that the quantity 1 ~  - f2l is bounded, 
due to linear momentum conservation, by the rule 

sup [(o9~ - g2)] = Y2 (4.6) 

If we assume (i) 7 >>~ and (ii) 17+s] >>f2, we extract, from (2.7), the 
approximation 

2g2_  12~12 
W+(s) ~-~Z ~+s (4.7) 
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A large sequence of numerical trials demonstrates that (4.7) holds for 7, 
17 + sl/> 10/2. Then, the poles are the roots of 

s ( 7 + s ) =  - 2 ~  IG.I  2 (4.8) 
~p 

with 2'~u = g2~u/h 

= -�89 { 

We then see that if 

1 [1 _+ (4.9) 

g2 ~ 12=.f2 > �89 
~,u 

the roots are complex, corresponding to the third regime in Figs. 2 and 4. 
However, such a regime is not physically acceptable, since the 

probabilities in (3.6) would oscillate, acquiring values above unity or below 
zero during finite time intervals. The appearance of such a regime is related 
to the collapse of the weak coupling approximation employed to extract 
the non-Markovian master equation (2.2). Indeed, it can be shown that the 
following relation holds: 

(zJOint)2 = g2 2 IA=.l 2 (4.10) 

where (zlHi, t) 2 is the dispersion of the interaction Hamiltonian with respect 
to the initial state. When this dispersion exceeds the inelasticity spread h7 
that yields the width of the Breit-Wigner filter, the assumptions giving rise 
to the latter [-or equivalently, to the representation of the correlation 
propagator in the memory kernel as a damped exponential on an unitary 
propagator, i.e., Eq. (2.3)] cease to be valid. Consequently, as the second 
transition is approached in the space of the roots, one should abandon the 
description (2.2) of the relaxation dynamics and reformulate the problem 
giving up the above-mentioned approximation. 

5. AN A P P R O X I M A T E  D E S C R I P T I O N  OF T H E  POLES 

We stress that the evolution of the poles displayed in Fig. 2 is not 
intrinsic to the set of values selected for this calculation, which correspond 
to a typical nuclear system. The interaction parameters adequate to those 
systems lie within the neighborhood of the first transition in the single-pole 
regime and it is of interest to nuclear physicists to find something out 
regarding the relation between the Markovian and the non-Markovian 
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poles. Other choices of the parameters shown at the beginning of this sec- 
tion will provoke smooth changes in the shape of the curves in Fig. 2 and 
preserve the overall features of the regimes and the connecting transitions. 
However, in the present case it is especially simple to take advantage of 
some numerics to perform the integration indicated in Eq. (3.8), dropping 
the unimportant contributions. On one side, one finds that all fermionic 
momenta (F, z~, z, ,  ks) are rather similar, while the phonon momentum q 
is about 0.3 fm-1. Another small number is the ratio eq/mC 2 (about 3 %), 
with ~q = h2q2/2m. Furthermore, one can consider f2 ~ y, and subsequently, 
( 2 / ( y - v ) ~ l  if v~y .  With these relations in view one finds the 
approximate expression [cf. Eq. (4.7)] 

,~ (nzren r ~ 7  2 (5.1) 
7 1 - v/~ 

from which we obtain the value of the ordinate, 

W+ ( O )/y ~ co ~ r2efrhq2( FZ /my 2 ) (5.2) 

According to (5.1), when the root of Eq. (4.2) occurs at a small v</7 value 
(first regime), we find 

v w+(0)/D- w+(0)] (5.3) 

We remark here that the Markovian pole is the one appearing when 
W+(0)~y ;  thus, neglecting W+(0) in the denominator, we find the 
expression 

vM = W+(0) (5.4) 

which is the eigenvalue equation of the standard QBM model in the 
Markovian approximation. Equation (5.3) then yields a relation linking the 
non-Markovian pole to the Markovian one. 

Equation (5.1) describes the transition rate to an excellent 
approximation in almost the whole interval 0 <~ v ~< 7- This fact can be 
appreciated in Fig. 4, where we have drawn, for each curve in Fig. 2 (full 
lines), the prediction of (5.1) (dottedlines). It is clear that the 
approximation is practically an exact description of the low-frequency pole 
and an exceptionally good approach to the high-frequency one. We can 
then complete our analysis of the physically admissible regimes 1 and 2 and 
of the first transition in the light of Eq, (5.1), which we can write 

W+(x)  = W+ (0)/(1 -- x) (5.5) 
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Fig. 4. (--) Same as in Fig. 2; (- -) the approximate solution of the pole equation (5.1). The 
values of the dispersion (AHint) 2 corresponding to curves I-5 are, respectively (in MeV2), 
14.44, 144.4, 723.6, 1250.0, and 1444.0. 

The pole equation x = W+ (x)/7 is a quadratic one in x with solutions 
[cf. Eq. (4.9)] 

x=�89 + [ 1 - 4 W + ( 0 ) / 7 ]  ~/2 } (5.6) 

We see that if 4 W + ( 0 ) ~  1, a series expansion of (5.6) up to second order 
for the smallest root leads us once again to (5.3). Recalling now the 
expression for the amplitude of the time evolution [-Eqs. (3.5) and (3.6)], 
we can write in the single-pole regime 

p l ( t ) =  I lim s _ s <  ]eS ,  ~ (5.7) 
L . . . .  s + W+ (s)J 

The limit in Eq. (5.7) can be graphically evaluated through either Fig. 2 or 
Fig. 4, since it can be written 

lim = 1 (5.8) 
. . . .  s + w +  (s) 

Using the approximate expression (5.5), we can explicitly calculate the 
derivative in Eq. (5.8), obtaining 

1 y - - v <  
- -  (5.9) 

1-dW+(v<)/dv 7-2v< 
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This directs our attention the fact that for t = 0 the amplitude is larger than 
unity. However, one can interpret this as simply bringing into evidence that 
a macroscopic evolution is only observable for macroscopic times, in our 
case, for t ~> ~ .... = y-1. Notice that if we look for the time to for which 
pl ( to)  = 1, i.e., for the origin of macroscopic times, it arises from (5.9) that 
t o is precisely the lifetime of correlations y 1. We ought then to consider 
expression (5.7) as legitimate for t > to. 

Equation (5.6) cannot describe the first transition, since it takes place 
outside the range of validity of the approximation (5.5), namely when 
x = 1. However, as the pole v> decreases, it is rather properly described by 
the largest root (5.6) (cf. Fig. 4) and the corresponding time evolution can 
be written as 

p l ( t )  y - v <  y - v >  e_V> t = e -v<' ~ - -  (5.10) 
y - 2 v <  y - 2 v >  

Opposite to what happens in the single-pole regime, this evolution law is 
valid for any time, since, according to (5.6), one can verify that 

y - - v <  y--V> 
pl(0) = ----a--- + - -  = 1 (5.11) 

y - 2v> y - z v <  

The second transition is contained in Eq. (5.6) and corresponds to the 
condition W+(0)/y= 1/4. Considering (5.2), we locate the value of the 
interaction parameter at this point, 

[ ~  ~. r~rf] 2 = my2/4hq2F2 (5.12) 

and following the geometric interpretation outlined in Section 4 for the first 
transition, we may consider that the finite duration of the collisions 
provokes an effective enlarging of the oscillator dispersion in the two 
two-pole regime. 

6. S U M M A R Y  

Our work has aimed at finding some insights and criteria through 
which one could avoid having to find the exact solution of an integrodif- 
ferential, non-Markovian dynamical system and approximate the problem 
by a differential-in-time, Markovian one. We have illustrated in the 
framework of a model how such a line of analysis might proceed. In par- 
ticular, we have seen that it is possible, in a situation where the physical 
magnitudes reproduce the relations occurring in a typical finite system, i.e., 
a nucleus, to relate the low-frequency poles of the non-Markovian 
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resolvent to the lowest nonvanishing eigenvalues of the associated 
Markovian generator of motion. We have carried out a complete dis- 
cussion and offered possible physical interpretations of the three different 
regimes that characterize the dynamics under consideration. 

A P P E N D I X  

Let us indicate the steps leading from the expression (2.7) for the 
microscopic transition rates W+(s) and the explicit integrals (2.14). We 
first explicitly introduce the momentum conservation relation k~ = k~ + q, 
perform the summation over momenta k~, and replace the remainding sum 
over k ,  by an integration. In order to write the integrand, we examine the 
arguments depending on both k~ and k u and impose momentum conser- 
vation, obtaining the following results: 

1. Argument of the Breit Wigner filter: 

-~--~,~-~ 

1 [ - h  2 2 2 q 
=-~ [~m (k~, - k.)  - hcsq J 

he 2 fhZ c 
= 2--'m + q \ m  s} 

(A1) 

with z denoting the z component of momentum ku. 

2. Fermi factor in W+(s): 

1 
F+(r, z)=pu(1 - p ~ ) =  

1 + exp[(r 2 + z 2 - F2)/k~] 

1 
X 

1 + exp{ [ - r  2 - (z + q)2 + r 2 ] / k ~  

with F the Fermi momentum, 

k2r = 2mT/h 2 

(A2) 

(A3) 

and r the polar component of momentum ku. 

3. The Fermi factor in W (s), 

t 
F_(r, z) = p~(1 - -p~)=  1 + exp{ [r 2 + (z + q)2_ F2]/k 2} 

1 
X 

1 + exp[ - (r 2 + z 2 - Fe)/k~] (A4) 
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Accordingly, we may write 

2g 2 -- s + y 
W+_(S)  = - - ~ L  I/~, u[2 6k~,k#+q (S ..~_ 7)2 qt_ (ge,u/h)2 p~(1 - p ~ )  

cqa /~ 

=-~-I,~12 ~ 2re r d r f  ~ dz F+(r,z) 
o q/2 (S "~ V) 2 -~- [ ~ , ( z ) / h ]  2 - 

(A5) 

We have adopted the criterion 12~12= [212 O(z+q/2) in order to ensure 
that at zero temperature, particle deexcitation due to phonon destruction is 
not allowed to take place. It becomes clear after inspection of (A2) and 
(A4) that the radial integrations can be performed analytically, 

R+(z) = 2 fo  r dr F+(r, z) (A6) 

The results of these integrations are displayed in Eqs. 
worthwhile pointing out that the relationship (2.15b) gives 

W _  (s) = e - ~ a / T W  + (s) 

(2.15). It is 

(A7) 

if the collisions are energy-conserving, since in the latter case we have, for 
the argument in the exponential in (2.15b), 

h2 h2 hGq (A8) 
2m----~ [z2 - (z + q)2] = _ 2mT (2zq + q2) = _ T 

the latter equality being a consequence of (A1). In other words, in the case 
of strict energy conservation at the collision vertex one recovers the 
canonical or Gibbsian equilibrium solution 

1 FW_(0)I" 1 e . h a / r  (A9) 
P~~ =Z~(~ Lw+(0)] =z--~) 
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